skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Irene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. This paper describes an AI Book Club as an innovative 20-hour professional development (PD) model designed to prepare teachers with AI content knowledge and an understanding of the ethical issues posed by bias in AI that are foundational to developing AI-literate citizens. The design of the intervention was motivated by a desire to manage the cognitive load of AI learning by spreading the PD program over several weeks and a desire to form and maintain a community of teachers interested in AI education during the COVID-19 pandemic. Each week participants spent an hour independently reading selections from an AI book, reviewing AI activities, and viewing videos of other educators teaching the activities, then met online for 1 hour to discuss the materials and brainstorm how they might adapt the materials for their classrooms. The participants in the AI Book Club were 37 middle school educators from 3 US school districts and 5 youth-serving organizations. The teachers are from STEM disciplines as well as Social Studies and Art. Eighty-nine percent were from underrepresented groups in STEM and CS. In this paper we describe the design of the AI Book Club, its implementation, and preliminary findings on teachers' impressions of the AI Book Club as a form of PD, thoughts about teaching AI in classrooms, and interest in continuing the book club model in the upcoming year. We conclude with recommendations for others interested in implementing a book club PD format for AI learning. 
    more » « less
  3. null (Ed.)
    The Contour to Classification game is a browser-based game that teaches middle school students basic concepts in supervised learning. The game is an online variant of the Neural Network game that was presented at AAAI Fall Symposium Teaching AI in K-12 track in 2019. We share preliminary findings from implementing the online version of the original Neural Network game in a pilot research study and describe the game’s evolution to the Contour to Classification game. The new game uses a simulation of a neural network to engage students, through digital drawing and selection interactions, in the classification of images. The players act as nodes in a multi-step process of compositing salient smaller features to form larger features and ultimately a partial contour of an object that is used to make a prediction. After evaluating the prediction, information is sent back through the network in processes mimicking back propagation and gradient descent. Additional rounds of the game can be played to witness how the network evolves and gets “better” at classifying images from contours. Through this game, we aimed for students to learn the structure, components, and functioning of a neural network, and the processes involved in supervised learning. The Contour to Classification game supports online student learning by providing the image classification experience using purely visual inputs to each layer. We will conclude with a discussion of if and how the evolving design addresses classroom needs and scaling considerations. 
    more » « less
  4. null (Ed.)
    Applications of generative models such as Generative Adversarial Networks (GANs) have made their way to social media platforms that children frequently interact with. While GANs are associated with ethical implications pertaining to children, such as the generation of Deepfakes, there are negligible efforts to educate middle school children about generative AI. In this work, we present a generative models learning trajectory (LT), educational materials, and interactive activities for young learners with a focus on GANs, creation and application of machine-generated media, and its ethical implications. The activities were deployed in four online workshops with 72 students (grades 5-9). We found that these materials enabled children to gain an understanding of what generative models are, their technical components and potential applications, and benefits and harms, while reflecting on their ethical implications. Learning from our findings, we propose an improved learning trajectory for complex socio-technical systems. 
    more » « less
  5. null (Ed.)
    In this experience report, we describe an AI summer workshop designed to prepare middle school students to become informed citizens and critical consumers of AI technology and to develop their foundational knowledge and skills to support future endeavors as AI-empowered workers. The workshop featured the 30-hour "Developing AI Literacy" or DAILy curriculum that is grounded in literature on child development, ethics education, and career development. The participants in the workshop were students between the ages of 10 and 14; 87% were from underrepresented groups in STEM and Computing. In this paper we describe the online curriculum, its implementation during synchronous online workshop sessions in summer of 2020, and preliminary findings on student outcomes. We reflect on the successes and lessons we learned in terms of supporting students' engagement and conceptual learning of AI, shifting attitudes toward AI, and fostering conceptions of future selves as AI-enabled workers. We conclude with discussions of the affordances and barriers to bringing AI education to students from underrepresented groups in STEM and Computing. 
    more » « less
  6. null (Ed.)
    Due to classrooms moving online during COVID-19, educators are faced with the challenge of adapting in-classroom curricula for online instructions. This poses challenges and opportunities for AI learning given the project-based learning approaches of existing curricula. We taught a 5-hour synchronous online class about AI to 17 middle school students. In this paper, we discuss challenges in adapting to online learning and future opportunities. Our contribution is valuable to educators and curriculum designers that are adapting their AI curricula for synchronous online learning. 
    more » « less
  7. null (Ed.)